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Gain and saturation in free-electron laser oscillators

Vinit Kumar and Srinivas Krishnagopal
FEL Section, Accelerator Programme, Centre for Advanced Technology, Indore 452 013, India

~Received 7 October 1996!

We present a calculation of the free-electron laser~FEL! gain, in the small gain, large signal regime that is
of relevance to FEL oscillators. We derive an analytic expression for the gain as a function of both the detuning
parameter and the optical intensity. We use this analysis to analytically determine the parameters of a three-
parameter generalized gain function that is valid to larger intensities and into the saturation regime. We find
that with increasing optical intensity the peak of the detuning curve shifts towards higher values of the detuning
parameter, and that at higher detuning the gain can actually increase with intensity before falling. We use this
parametrization to predict the dependence of the saturated power in an FEL oscillator on the detuning param-
eter. Our results are in good agreement with one-dimensional numerical simulations that donotmake the small
gain approximation and also with experimental data from the Institute of High Energy Physics, Beijing and
Stanford University FIREFLY FELs. Our analysis should therefore be useful in the design of FEL oscillators.
@S1063-651X~97!10802-9#

PACS number~s!: 41.60.Cr, 52.75.Ms
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I. INTRODUCTION

The free-electron laser~FEL! @1# produces widely tunable
coherent radiation by passing a beam of electrons from
accelerator through a static, spatially periodic, magn
field, produced by a device called a wiggler. The wavelen
lR of the radiation is given by

lR5
lW

2gR
2 ~11aW

2 !, ~1!

wherelW is the wavelength of the periodic magnetic fiel
gR is the resonant energy of the electron in units of its r
massme , andaW (5elWBW /2pmec) is thewiggler param-
eter. HereBW is the rms value of the magnetic field,e is the
charge of the electron, andc is the speed of light in vacuum

Actually, electrons with energy exactly equal togR are in
resonance with the optical field and do not, on average,
change energy with it. In order to have gain in the syst
it is necessary to ‘‘detune’’ the energy, and the deviat
from resonance is measured by the detun
m54pNW(g2gR)/gR , which is just the electron energ
measured relative to the resonant value and normalized to
energy bandwidth of the FEL; hereNW is the number of
wiggler periods. The value ofm at the entrance to the wig
gler is called thedetuning parametera. Clearly, a is an
important parameter in determining the gain, and hence
performance, of the FEL.

In the limit that the gain and the optical intensity a
small, it is a textbook calculation to determine thesmall-
signal-gain (SSG) curve g0(a) as a function of the detuning
parameter@1#. This detuning curveis asymmetric and has
maximum ata52.6. One of the early successes of FE
theory came when the detuning curve was measured
found to agree well with theory@2#. The SSG analysis is ver
helpful in understanding the startup of an FEL oscillator. F
the FEL to lase, the SSG is required to be greater than
total round-trip loss. Once the FEL starts lasing, the intr
avity power in the FEL starts building up. It is well know
551063-651X/97/55~2!/1887~7!/$10.00
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that the gain of an FEL, away from the SSG limit, depen
on the intracavity intensity. As the intensity builds up th
gain falls. Finally, when the gain becomes equal to the lo
the optical power saturates. It is important to realize t
away from the SSG limit the functional dependence of
gain on the detuning parameter changes; in particular
peak of the detuning curve will no longer be ata52.6.
Hence, to better understand the growth and saturation of
tical power in an FEL, it is necessary to derive the function
relationship of the gain on both detuning and intensity, i
to determine ageneralized gain functionthat in the SSG
limit reduces to the well-known detuning curve.

FELs can be operated in two different configurations:
amplifiers and as oscillators. The former are single-pass
vices and, for that reason, operate with high gain. They a
require long undulators, and are therefore expensive dev
FEL oscillators are multi-pass devices. The gain per p
may be low, but many electron bunches pass through
undulator and the optical power can therefore, over ma
passes, build up to a large value. Most operating FELs
oscillators.

There have been earlier analytic studies of FEL dynam
and gain in the high gain regime that are of relevance to F
amplifiers @3,4#. In these analyses the emphasis is on
influence of three-dimensional effects~such as transvers
emittance and betatron motion! on the gain of FEL amplifi-
ers. Their approach is to treat the electron beam as cont
ous and derive a dispersion relation from the Maxwe
Vlasov equations. In Ref.@3# the dispersion relation is solve
using a variational technique, whereas in Ref.@4# it is solved
by expansion in a complete set of orthogonal functions. T
final solution, in both cases, is numerical, and hence
functional dependence of the gain on detuning and inten
is difficult to reconstruct. Additionally, in Ref.@4# it is
clearly stated thattheir numerical solutions do not agre
with multiparticle simulations in the one-dimensional lim
This suggests that the work of Refs.@3,4#, though powerful
and useful in the design of FEL amplifiers when thre
1887 © 1997 The American Physical Society
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1888 55VINIT KUMAR AND SRINIVAS KRISHNAGOPAL
dimensional effects dominate, has limited use in study
purely one-dimensional effects and in the study of FEL
cillators.

In FEL oscillators, where the gain per pass is typica
low but the optical power builds up to a large value ov
many passes, it is thesmall gain, large signalregime that is
important. In this paper we consider FEL dynamics and g
in the one-dimensional, small gain, but large signal regim
Our emphasis is on understanding the simultaneous de
dence of the gain on the detuning parameter as well as
intensity of the optical field. We stick to the simple, singl
particle approach of Colson@5#, but extend it to the large
signal regime. Our approach provides a transparent
physically intuitive understanding of the FEL gain in th
small gain, large signal regime. In the next section we s
with the Colson equations@5# and derive an analytic expres
sion for the gain as a function of energy detuning as wel
intensity. In Sec. III we use this expression to analytically
the parameters of a three-parameter parametrization of
gain, thegeneralized gain function, that has a broader regim
of validity. In Sec. IV we employ our analytic results t
study the buildup of intensity in an FEL oscillator, and u
the generalized gain function to predict the saturated in
sity in the oscillator. In Sec. V we compare our predictio
with data from two operating FEL oscillators, the Beijin
FEL and the FIREFLY FEL at Stanford, and show that o
predictions are in good agreement with experiments.
conclude with some comments and discussion.

II. DERIVATION OF THE GAIN IN THE SMALL GAIN,
LARGE SIGNAL REGIME

We start with the dimensionless Colson equations@5#

dm

dt
52eLsinc, ~2a!

dc

dt
5m, ~2b!

deL
dt

5 j e^sinc&, ~2c!

wherec is the electron’s phase relative to the electrom
netic field,eL is the dimensionless laser field,t is the dimen-
sionless time,j e is the dimensionless current density, a
^ & indicates averaging over all electrons. Solutions of E
~2! give a good description of the physics of short wav
length FELs, in the one-dimensional limit. ForN electrons
there are 2N11 coupled nonlinear differential equation
which cannot be solved analytically. Analytic solutions a
possible only under certain approximations. One approxim
tion that is relevant to FEL oscillators is thesmall gainap-
proximation, where we assume that the gain in a single p
is small. TheneL in Eqs. ~2a! and ~2b! can be treated as
constant during any given pass, and these equations co
quently decouple from Eq.~2c!. Note that the magnitude o
eL can still be large, so that these equations are valid in
large signal, small gainlimit.

From Eqs.~2a! and~2b! the differential power gain of the
FEL can be written as
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dG

dt
5
2 j e
eL

^sinc&. ~3!

We look for a solution to Eqs.~2a! and ~2b! in the form of
the following power series in the electric fieldeL :

m5m01eLm11eL
2m21eL

3m31eL
4m41eL

5m51•••,
~4a!

c5c01eLc11eL
2c21eL

3c31eL
4c41eL

5c51•••.
~4b!

One can similarly expand the expression for the gain in po
ers ofeL ; up to fourth order ineL we get

dG

dt
5
dG0

dt
1eL

dG1

dt
1eL

2 dG2

dt
1eL

3 dG3

dt
1eL

4 dG4

dt
. ~5!

Note that the usual SSG analysis only keeps terms up to
order in eL in Eqs. ~4!, and hence only the first, intensity
independent, term in Eq.~5!. We keep terms up toeL

4 in
order to make the gain a nonlinear function of the intens
@see Eq.~7! below#.

Substituting Eqs.~4! back into Eqs.~2a! and~2b!, expand-
ing the trigonometric term, and gathering equal powers
eL on both sides, gives a hierarchy of equations for the v
ouscn andmn (n 5 0–5!. These are solved using the initia
conditionsm05a, c05f0, mn.050, cn.050. Herea is
the detuning parameter, andf0 is the electron’s initial ran-
dom phase. We have assumed an ideal monoenergetic
bunched beam.

Similarly, substituting Eqs.~4b! and ~5! in Eq. ~3! and
equating equal powers ofeL gives a set of equations for th
variousdGn /dt; these will be zero for oddn, since the gain
depends only on the intensity, i.e., on even powers ofeL .
The final expressions are

dG0

dt
52 j e^c1cos~at1f0!&, ~6a!

dG2

dt
52 j e^~c32c1

3/6!cos~at1f0!

2c2c1sin~at1f0!&, ~6b!

dG4

dt
52 j eK S c52

c3c1
2

2
2

c2
2c1

2
1

c1
5

120D cos~at1f0!

1S c2c1
3

6
2c3c22c4c1D sin~at1f0!L , ~6c!

where the variouscn are now known quantities.
The total FEL gain~defined here as the ratio of the in

crease in intensity to the initial intensity! can be evaluated by
averaging Eqs.~6! over the initial phasef0 of the electrons,
and then integrating over the entire length of the wigg
~i.e., from t 5 0 to 1!. Assuming that the laser field is un
form inside the wiggler during integration~small gain ap-
proximation!, we find that the FEL gain is given by

G~a,eL
2!52 j e@g0~a!1eL

2g2~a!1eL
4g4~a!#, ~7!
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where

g0~a!5
1

a3 F12cosa2
a

2
sinaG , ~8a!

g2~a!5
1

8a7 F332S 242 13

2
a2D cosa2~92a2!cos2a2S 532 a2

1

2
a3D sina2

11

2
asin2a G , ~8b!

g4~a!5
1

13824a11@~20008011728a2!2~76070258296a22288a4!cosa2~107152248960a21576a4!cos2a

2~1685824176a2!cos3a2~154033a27272a3136a5!sina

2~122896a28568a3!sin2a2~13845a2468a3!sin3a#. ~8c!
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The calculations of the functionsg2(a) andg4(a), although
straightforward, are tedious. The functiong2(a) was calcu-
lated manually, but the calculation of the functiong4(a) was
performed usingMATHEMATICA @6#. The large numbers in
the expression forg4(a) are a consequence of carrying o
the calculation to high~fourth! order ineL .

Equation~7! gives the gain as a function of both ener
detuning as well as optical intensity. Note that the gain
pends only on the dimensionless parametersa and eL

2 . In
principle it also depends on the dimensionless current d
sity j e ; however, that only serves to set the overall sc
factor for the gain curve. Thus, Eq.~7! gives a universal
family of generalized detuning curves that replace the sin
SSG curve when the small signal approximation can
longer be made.

Figure 1 shows plots of the functionsg0(a), g2(a), and
g4(a); note the different scales. At zero detuning they are
zero, resulting in no gain. At very low intensities (eL

2,1)
only g0 contributes, and the total gain therefore increase
a maximum ata52.6 before decreasing. AseL

2 increases
first g2 and theng4 start contributing, and one expects th
peak of the gain curve to shift away froma52.6. This is
seen explicitly in Fig. 2, which shows the family of detunin
curves for differenteL

2 . It can be seen that the peak ga

FIG. 1. Plots ofg0(a), g2(a), andg4(a) as a function of the
detuning parametera @Eqs. ~8!#. For the sake of comparision
g2(a) andg4(a) are enhanced by a factor of 102 and 104, respec-
tively.
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decreases with increasing intensity, and also shifts towa
a54.0. Figure 2 also shows the corresponding curves
tained from a one-dimensional, time independent, multip
ticle FEL simulation that solves the nonlinear Kroll-Morton
Rosenbluth equations@7# and does not make the small ga
approximation. The FEL parameters chosen arelR51mm,
lW54 cm,gR5200,aW51.0, r beam5 2 mm,NW550, and
I5100 A. It can be seen that the agreement is very good
to aroundeL

2535, well beyond the SSG regime~for which
eL
2,1).
The shift in the peak of the detuning curve as a funct

of intensity has an important consequence for FEL osci
tors. We know that a free-running oscillator picks a detun
at which the gain is maximum. The operating value ofa for
an FEL oscillator at saturation is going to be different fro
2.6, which is the value ofa only during startup. This will
introduce achirp in the frequency of the optical radiation
We will show later that it also significantly affects the ca
culation of maximum saturated power in the FEL oscillat

III. THE GENERALIZED GAIN FUNCTION G„a,eL
2
…

Figure 2 shows that beyondeL
2550 the analytic expres

sion for the gain, Eq.~7!, fails. This is because at large
intensities the higher-order terms that we have dropped in

FIG. 2. Plot of the total gain as a function of the detuni
parametera for different intensitieseL

2 for the analytic calculation
@Eq. ~7!# as well as numerical simulations.
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1890 55VINIT KUMAR AND SRINIVAS KRISHNAGOPAL
Taylor expansion of Eqs.~4! and~5! cannot be ignored. Ex
tending the expansion even further is neither very pract
nor tractable. Instead, in order to get a generalized gain fu
tion that is valid for higher intensities and into the saturat
regime, it is more productive to parametrize the gain.

One widely used parametrization of the gain as a funct
of intensity I is

G~ I !5
G0

11I /I s
, ~9!

whereG0 is determined from the low-intensity behavior
the gain, andI s is an empirical constant that depends on
nature of the system being investigated. It can be seen f
the above equation thatI s is the value of the intensity a
which the initial gainG0 halves, and it can therefore b
determined experimentally. Such a formula is often used
both conventional lasers and as well as FELs. Of course,
above formula can only be expected to give an approxim
qualitative, description of gain saturation, and a more ac
rate gain functionG(I ) will depend on the details of the
system being investigated.

For FELs, Dattoliet al. have studied this issue in som
detail @8–10#. In particular, they have performed a simp
calculation@8# based on an analogy with the laser rate eq
tions for conventional lasers, to obtain the following equ
tion for the gain of FELs:

G~ I !5G0

~12e2 I /I s!

I /I s
. ~10!

There are a number of assumptions made in arriving at
equation; in particular the small gain approximation is ma
so that this analysis is expected to be more suited to F
oscillators.

Equation~10! for the gain in an FEL oscillator is impor
tant because it is based on FEL dynamics. It is essentia
two-parameter parametrization for the gain, the two para
eters beingG0 andI s . The former can be determined from
SSG analysis or measurement, and the latter has to be d
mined by fitting to numerical simulations or experimen
data. In addition, a drawback with this formula is that there
no dependence on the energy detuninga, which we know is
important in determining the gain. In fact, in the limit th
I→0 one cannot recover the usual SSG formula in full b
cause the dependence on energy detuning has been rem
by assuming thata52.6. In the determination ofI s too, it is
implicit that a52.6 @10#, whereas we have seen in the pr
vious section that the actual value ofa at saturation is likely
to be close to 4.0.

Our analysis, and Eq.~7! in particular, offers the oppor
tunity to improve on Eq.~10!. For intensities at which ou
analysis is valid~i.e., for eL

2,50) Eq.~10! should reduce to
Eq. ~7!. Therefore, expanding Eq.~10! in a power series in
I , keeping only the linear term, and comparing with Eq.~7!,
determinesI s analytically and also introducesa dependence
into it. When we do this we get an analytic expression
I s , which, when evaluated for the value ofa52.6 assumed
in Refs. @8–10#, gives a number that is within 20% of th
corresponding number using their formula forI s @8#.
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A cursory look at Eq.~7! shows that we can actually d
better. We could use theeL

4 term in that equation to deter
mine another free parameter in the gain parametrizat
Note also that this is not just a refinement; theeL

4 term in Eq.
~7! is needed to make the gain a nonlinear function of int
sity, and, as we will show below, that is crucial in explainin
an unexpected, nonmonotonic, dependence of the gain
intensity, which is seen in multiparticle simulations that
not make the small gain assumption.

We therefore propose the following three-parameter
rametrization of the gain:

G~a,eL
2!52 j ea0

12exp@2~a2eL
21a4eL

4!#

a2eL
21a4eL

4 , ~11!

where the functionsa0(a), a2(a), and a4(a), determined
analytically by Taylor-expanding Eq.~11! to second order in
eL
2 and equating with Eq.~7!, are given by

a0~a!5g0~a!, ~12a!

a2~a!522
g2~a!

g0~a!
, ~12b!

a4~a!5
4

3 Fg2~a!

g0~a!G
2

22Fg4~a!

g0~a!G . ~12c!

Equation~11! for thegeneralized gain functionis an im-
provement over Eq.~10! in three respects. First, it include
information from a higher-order Taylor expansion than do

FIG. 3. Plots of the total gain~a! as a function of the detuning
parametera for different intensitieseL

2 and ~b! as a function of
eL
2 for different a. In both cases the analytic curve is for the ge
eralized gain function of Eq.~11!. Note that in~b!, for a54.2 the
gain is nonmonotonic; it actually increases slightly before fallin
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55 1891GAIN AND SATURATION IN FREE-ELECTRON LASER . . .
Eq. ~10!, and is therefore expected to be more accurate;
ond, it includes the dependence on detuning, unlike Eq.~10!,
which assumesa52.6; third, all the parameters are dete
mined analytically — there is no fitting to numerical data

Figure 3~a! shows plots ofG(a,eL
2) as a function ofa,

obtained using the above parametrization as well as from
one-dimensional simulations described earlier. It can be s
that the parametrization nearly doubles the range of vali
of the generalized gain function. At larger intensities there
a systematic underestimate of the actual value of the gai
around 10–15%, but the overall shape of the curve and
shifting of the peak towards higher detuning are in go
agreement with the simulations.

The variation of the FEL gainG(a,eL
2) as a function of

the intensityeL
2 for different values ofa, is shown in Fig.

3~b!. Again, there is good agreement between the anal
results and numerical simulation. For different values of
tuning, the gain falls at different rates. For higher values
the detuning parameter (a 5 4.2! we observe the unex
pected, nonmonotonic, behavior referred to earlier in t
section; the gain firstincreasesslightly and then decrease
This may seem surprising, but can be understood from
1, where we see thatg2(a) is negative up to around
a53.7, and beyond that it turns positive. Wheng2(a) is
positive its contribution nowaddsto that ofg0(a), and the
net effect is an increase in the total gain. As the intens
increases further, theg4(a) term, which is negative, now
becomes important, so that the total gain starts decrea
This gives rise to a nonmonotonic dependence of the gain
intensity. All the previous attempts to understand the int
sity dependence of FEL gain had predicted only a monoto
fall in the gain with increasing intensity. Note that this no
monotonic behavior is also seen in the simulations. Its ori
lies in theeL

4 term in Eq.~11!.

IV. BUILDUP OF INTENSITY AND SATURATION
IN FEL OSCILLATORS

We now apply the generalized gain function to the stu
of the buildup of intensity and saturation in FEL oscillato
Typically, in an oscillator, the net gain per pass is low. T
optical intensity is built up slowly, over many passes. The
fore, during any given pass the small gain approximation
good, and the analysis of the previous sections is applica

We therefore use the earlier analysis to model an F
oscillator as follows. During any pass we assume that
gain is small and hence the intracavity power is nearly c
stant, so that Eq.~11! for the gain can be employed. Wit
this calculation of the gain we update the value of the int
cavity power, which is then used as a constant for the n
pass. In this way we can model the pass-by-pass buildu
the intensity in an FEL oscillator, and compare it with on
dimensional simulations that do not make the small gain
sumption.

The equation governing the buildup of intensity is giv
by

eL,n11
2 5eL,n

2 1@G~a,eL,n
2 !2l #eL,n

2 , ~13!

wherel is the round-trip loss.
Figure 4 shows the pass-by-pass buildup of power in
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FEL oscillator according to this simple model. Also shown
the corresponding plot from the numerical simulation. It c
be seen that the agreement between the two is generally
good, especially during the growth of the intracavity pow
The difference between the saturated power predicted by
analysis and the numerical simulation is typically 10%. Th
shows that the small gain approximation we make is a g
one, and validates the application of our analysis to F
oscillators.

The saturated intracavity intensity is an important qua
tity since it decides how much power we are really going
get out of the FEL. One can get the saturated intraca
intensity by numerically integrating the FEL equations. N
merical simulations, however, cannot give the insight in
the functional dependencies that analytic relations c
Hence, in order to get a better understanding of saturatio
FEL oscillators, it is worth attempting an analytic calculatio
of the saturated intracavity intensity. Our analysis make
possible to calculate the saturated intracavity intensityeL,sat

2

FIG. 4. Plot of the intracavity power in an FEL oscillator as
function of pass number for the analytical calculation@Eq. ~13!# as
well as numerical simulation.

FIG. 5. Plot of the saturated intensityeL,sat
2 in an FEL oscillator

as a function of the detuning parametera. The analytic curve cor-
responds to the solution of Eq.~14!.
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1892 55VINIT KUMAR AND SRINIVAS KRISHNAGOPAL
as a function of the detuning parametera by equating the
gain at saturation to the loss, i.e.,

G~a,eL,sat
2 !5l . ~14!

Figure 5 showseL,sat
2 as a function of the detuning param

etera, calculated using Eq.~14!, where a round-trip loss o
7% has been assumed. Asa increases from zero, initially the
gain is less than the loss. Lasing starts only when the g
becomes just greater than the loss, and hence there ex
lower threshold ina below whicheL,sat

2 50. As the detuning
is increasedeL,sat

2 initially increases, reaches a maximum
and then falls abruptly at an upper threshold beyond wh
the gain is again less than the loss. The corresponding
merical simulation curve is also shown in Fig. 4. We fi
that the agreement between the analytic calculation and
numerical simulation is quite good. The positions of the t
thresholds agree well, and even the difference between
value of the maximum saturated intensity as predicted by
analysis and the numerical simulation is typically less th
10%. This suggests that our analysis could be very usefu
the design of FEL oscillators, for making quick yet reliab
estimates of the saturated power, and in studying the sca
of saturated intensity with total round-trip loss.

V. COMPARISON WITH EXPERIMENTS

In the previous section we have used our analysis to st
the buildup and saturation of power in an FEL oscillator, a
have shown that the results are in good agreement with
dimensional simulations with typical FEL parameters. T
motivates strongly the conclusion that the regime in wh
our analysis is valid~large signal, small gain regime! is both
realistic and relevant. However, especially given the simp
ity of the analysis, there may remain some questions reg
ing its applicability to real, operating, FELs — and hence
relevance and usefulness.

To address this issue we chose two operating FEL os
lators for which all the relevant data were readily availab
the Beijing FEL and the FIREFLY FEL at Stanford. We the
used Eq.~14! to predict the saturated power and energy
tuning for both the FELs, and compared with the availa
data.

For the Beijing FEL the operating parameters were@11#
E524 MeV, I peak 5 15 A, lW 5 3 cm, NW 5 50,
aW50.83, andlR 5 10.68mm. The SSG and the total cavit
loss were reported to be 32% and 8%, respectively. The
perimental data for the optical beam radius were not
ported. However, on the basis of the reported design par
eters of the resonator cavity, we calculated the mean ra
of the optical beam inside the undulator to be around 2 m
To apply our analysis to this FEL we first calculated t
‘‘effective’’ dimensionless current densityj e from the SSG
data. In this way, various gain degrading effects such as
ing factor and slippage can be empirically accounted
they are all lumped into the ‘‘effective’’j e . We then used
Eq. ~11! for the generalized gain function in Eq.~14! to
calculate the saturated intracavity power for differenta. We
found that the maximum value of the saturated power was
MW at a54.7. This value of the saturated power is in go
agreement with the observed value of 20 MW. There was
in
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direct measurement ofa, but the detuning can be deduced
the shift in the peak of the radiation spectrum between sp
taneous and stimulated emission. This was reported to
1.6%. Fora54.7 this shift comes out to be 1.5%, which is
very good agreement with the experimental number.

For the FIREFLY FEL the operating parameters we
@12# E522 MeV, I peak514 A, NW525, lW56 cm, aW
51.05, andlR532mm. The optical beam radius was 3 m
@13#. The SSG and the total cavity losses were reported@12#
to be 7.0% and 4.3%, respectively. For these paramete
similar analysis gave a maximum saturated power of 25 M
ata54.0. This is in good agreement with the measured sa
rated power of 30 MW with an experimental uncertainty
6 30% @13#. For FIREFLY there are no data for the shift i
the radiation peak, but we predict a shift of 2.5%.

So, we conclude that the predictions of our analysis are
good agreement with both the FIREFLY and Beijing FE
oscillators operating in small gain, large signal regim
This further validates the relevance and applicability of o
analysis.

VI. DISCUSSION AND CONCLUSIONS

It should be emphasized that our calculation is valid in
small gain, large signal regime, which is the regime of r
evance for FEL oscillators where the gain can be quite l
but the intensity can, over many passes, build up to a la
value. For amplifiers, where the gain is generally high,
electron and radiation dynamics cannot be decoupled
hence the present analysis is not expected to be valid.

It should also be noted that our analysis gives an exp
sion for the generalized gain function, which is universal
nature since it is in terms of the dimensionless variablesj e
andeL

2 . The dependence of the gain on various FEL para
eters can be extracted by simply writing the dimensionl
variables in terms of FEL parameters. In this way, one c
get scaling relations for the saturated intracavity power
terms of the various FEL parameters, such as wiggler len
LW , wiggler parameteraW , wiggler periodlW , beam en-
ergyE, etc.

There are certain gain degradation effects that we h
not considered in our analysis. For example, we have
considered the energy spread in our analysis since we
sume a monoenergetic electron beam. However, as show
Ref. @10# using numerical simulations, for typical FEL osci
lator parameters the gain and saturation intensity typic
change by less than 10% for a relative energy spread of
Similarly, the transverse emittance, which can be mode
by an equivalent longitudinal energy spread, is also not
pected to change the saturation intensity significantly.
some extent gain degradation due to filling factor and s
page are empirically taken into account in our comparis
with experiments by lumping them in the ‘‘effective’’j e ,
which is determined from themeasuredvalue of the SSG.
Hence, the errors creeping in our analysis by ignoring th
effects are expected to be typically around 10–20%.

Analytic work on the single-particle Colson equations h
generally been restricted to the SSG analysis. Away fr
this regime analyses have usually assumed a continu
electron beam and attempted to solve the coupled Maxw
Vlasov equations. This is in spite of the fact that numeri
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simulations of short wavelength FELs are based on
single-particle equations and have proven to be extrem
successful. Our analysis, and the good agreement with
operating FELs, shows that for FEL oscillators one can
useful physics out of the single-particle Colson equatio
even away from the SSG limit.

It is true that by numerical integration of the Colson equ
tions @Eqs.~2!#, one can get more detailed information abo
gain and saturation in FEL oscillators. This approach, ho
ever, cannot give insight into the various functional dep
dencies. Our analytical calculation, on the other hand,
the advantage that it can be used to get various functio
dependencies, which helps in developing a better phy
insight into the system. For example, the nonmonotonic
pendence of the gain on intensity, which is also seen in
merical simulations, can be qualitatively understood by s
ply looking at Fig. 1 obtained from our analysis~as has been
discussed in Sec. III!. In Fig. 3 we see that at aroun
a54.0, the gain versus intensity curve is relatively fl
Thus, at higher intensity, this is the most favorable detun
for the oscillator to pick. This would perhaps explain why,
both simulations as well as the experiments reported h
for a variety of FEL parameters, the value ofa at saturation
is around 4.0.

It is interesting to note that our analysis can also be u
to explicitly test the validity of the well known Madey gain
spread theorem@14# beyond the SSG limit. The Madey theo
rem relates the first moment of the electron energy chang
its second moment in the wiggler in the following way:

^Dm&5
1

2

d

da
^Dm2&. ~15!

Using the perturbative expansion of Eq.~4!, this relation can
be checked to any order ineL . We have checked tha
^m1&5^m3&5^m1m2&50. Hence, the lowest order non
vanishing term in the expression for bothDm andDm2 is of
,
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second order ineL . Equating them, we get the Madey the
rem in the SSG limit:̂m2&5(1/2)d/da(^m1

2&). However, as
we go to the next-order nonvanishing term~which is of
fourth order ineL), the validity of the Madey theorem de
mands that̂ m4&5(1/2)d/da^m2

212m1m3&. With the ex-
pressions form3 andm4 derived by us, we find that

^m4&5
1

64a7 @232a31~4852a2!cosa1~336a2!cos2a

1~124a4a3!sina128asin2a#, ~16a!

1

2

d

da
^m2

212m1m3&5
1

16a7 @2461~288237a2!cosa

1~22a2242!cos2a

1~173a23a3!sina

1~4a3249a!sin2a#. ~16b!

Since the right-hand sides of Eqs.~16! are not identical, the
Madey theorm is violated beyond the SSG limit.

In summary, we have shown that the standard sing
particle perturbative analysis can be extended to give in
mation about the detuning as well as intensity dependenc
the gain. One can use this analysis to fix the parameter
the generalized gain function that is valid to larger intensit
and into the saturation regime. We thus obtain a general
gain functionG(a,eL

2) that is analytic, has no free param
eters, is universal, and agrees well with numerical simu
tion, even in its prediction of an unusual nonmonoton
variation of the gain with intensity. Predictions of the sat
rated intensity are also in good agreement with numer
simulations as well as with experimental data from two o
erating FEL oscillators, the Beijing FEL and the FIREFL
FEL at Stanford. Our analysis should therefore be usefu
the design of FEL oscillators.
.
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