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Gain and saturation in free-electron laser oscillators
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We present a calculation of the free-electron Ig§#tL) gain, in the small gain, large signal regime that is
of relevance to FEL oscillators. We derive an analytic expression for the gain as a function of both the detuning
parameter and the optical intensity. We use this analysis to analytically determine the parameters of a three-
parameter generalized gain function that is valid to larger intensities and into the saturation regime. We find
that with increasing optical intensity the peak of the detuning curve shifts towards higher values of the detuning
parameter, and that at higher detuning the gain can actually increase with intensity before falling. We use this
parametrization to predict the dependence of the saturated power in an FEL oscillator on the detuning param-
eter. Our results are in good agreement with one-dimensional numerical simulations tioattike the small
gain approximation and also with experimental data from the Institute of High Energy Physics, Beijing and
Stanford University FIREFLY FELs. Our analysis should therefore be useful in the design of FEL oscillators.
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I. INTRODUCTION that the gain of an FEL, away from the SSG limit, depends

on the intracavity intensity. As the intensity builds up the
The free-electron las€FEL) [1] produces widely tunable gain falls. Finally, when the gain becomes equal to the loss,
coherent radiation by passing a beam of electrons from athe optical power saturates. It is important to realize that
accelerator through a static, spatially periodic, magnetiaway from the SSG limit the functional dependence of the
field, produced by a device called a wiggler. The wavelengtiyain on the detuning parameter changes; in particular the

Ar of the radiation is given by peak of the detuning curve will no longer be at=2.6.
N Hence, to better understand the growth and saturation of op-
)\R:_V\;(l+ a2), (1) tical power inan FEL, it is necessary to derive t_he fur_lctio_nal
R relationship of the gain on both detuning and intensity, i.e.,

to determine ageneralized gain functionhat in the SSG
{imit reduces to the well-known detuning curve.

FELs can be operated in two different configurations: as
amplifiers and as oscillators. The former are single-pass de-
vices and, for that reason, operate with high gain. They also
require long undulators, and are therefore expensive devices.

resonance with the optical field and do not, on average, ex-EL oscillators are multi-pass devices. The gain per pass
change energy with it. In order to have gain in the systenin@ be low, but many electron bunches pass through the
it is necessary to “detune” the energy, and the deviationundulator and the optical power can therefore, over many

from resonance is measured by the detuning?@SSes, build up to a large value. Most operating FELs are
u=47Nw(y—yr)/ vr, Which is just the electron energy Oscillators. _ _ _ _
measured relative to the resonant value and normalized to the There have been earlier analytic studies of FEL dynamics
energy bandwidth of the FEL; hemd,, is the number of and gain in the high gain regime that are of relevance to FEL
wiggler periods. The value g at the entrance to the wig- amplifiers[3,4]. In these analyses the emphasis is on the
gler is called thedetuning parametew. Clearly, a is an influence of three-dimensional effectsuch as transverse
important parameter in determining the gain, and hence themittance and betatron motipon the gain of FEL amplifi-

where\y is the wavelength of the periodic magnetic field,
vr is the resonant energy of the electron in units of its res
massm,, anday, (=exyBy/27mcC) is thewiggler param-
eter. HereB,y is the rms value of the magnetic fielejs the
charge of the electron, artdis the speed of light in vacuum.
Actually, electrons with energy exactly equalg are in

performance, of the FEL. ers. Their approach is to treat the electron beam as continu-
In the limit that the gain and the optical intensity are ous and derive a dispersion relation from the Maxwell-
small, it is a textbook calculation to determine temall-  Vlasov equations. In Ref3] the dispersion relation is solved

signal-gain (SSG) curve §a) as a function of the detuning using a variational technigue, whereas in Ré{.it is solved
parametef1]. This detuning curvds asymmetric and has a by expansion in a complete set of orthogonal functions. The
maximum ata=2.6. One of the early successes of FELfinal solution, in both cases, is numerical, and hence the
theory came when the detuning curve was measured arfdnctional dependence of the gain on detuning and intensity
found to agree well with theorj?]. The SSG analysis is very is difficult to reconstruct. Additionally, in Ref[4] it is
helpful in understanding the startup of an FEL oscillator. Forclearly stated thatheir numerical solutions do not agree
the FEL to lase, the SSG is required to be greater than theith multiparticle simulations in the one-dimensional limit.
total round-trip loss. Once the FEL starts lasing, the intracThis suggests that the work of Ref8,4], though powerful
avity power in the FEL starts building up. It is well known and useful in the design of FEL amplifiers when three-
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dimensional effects dominate, has limited use in studying dG 2j. .
purely one-dimensional effects and in the study of FEL os- a9 6—<S'n¢>- (©)]
cillators. L

In FEL oscillators, where the gain per pass is typicallywe |ook for a solution to Eqs2a) and (2b) in the form of

low but the optical power builds up to a large value overthe following power series in the electric fiek :
many passes, it is th@mall gain, large signategime that is

@mportant. In. this paper we consit_jer FEL dynamics and _gain m=pmote ui+ EszJr ef,u3+ e‘L",u4+ ef,u5+ cee

in the one-dimensional, small gain, but large signal regime. (4a)

Our emphasis is on understanding the simultaneous depen-

dence of the gain on the detuning parameter as well as the =g+ e, 1+ €2 ho+ € tha+ €} hat € ths+ - - -.

intensity of the optical field. We stick to the simple, single- (4b)
particle approach of Colsofb], but extend it to the large

signal regime. Our approach provides a transparent angne can similarly expand the expression for the gain in pow-
physically intuitive understanding of the FEL gain in the ers ofe_; up to fourth order ine, we get

small gain, large signal regime. In the next section we start

with the Colson equation$] and derive an analytic expres- d_G: ﬁ E ﬁ dG; dGg
sion for the gain as a function of energy detuning as wellas dr dr - dr dr dr
intensity. In Sec. Il we use this expression to analytically fix

the parameters of a three-parameter parametrization of tHdote that the usual SSG analysis only keeps terms up to first
gain, thegeneralized gain functigrthat has a broader regime order ine_ in Egs.(4), and hence only the first, intensity-
of validity. In Sec. IV we employ our analytic results to independent, term in Eq5). We keep terms up te; in
study the buildup of intensity in an FEL oscillator, and useorder to make the gain a nonlinear function of the intensity
the generalized gain function to predict the saturated intenfsee Eq.(7) below].

sity in the oscillator. In Sec. V we compare our predictions Substituting Eqs(4) back into Eqs(2a) and(2b), expand-
with data from two operating FEL oscillators, the Beijing ing the trigonometric term, and gathering equal powers of
FEL and the FIREFLY FEL at Stanford, and show that oure_ on both sides, gives a hierarchy of equations for the vari-
predictions are in good agreement with experiments. W@®us#, andu, (n = 0-5). These are solved using the initial

dG,

3
+e€ .
L dr

+EE +eﬁ

®)

conclude with some comments and discussion. conditions wo= a, o= g, mn>0=0, ¥,~0=0. Herea is
the detuning parameter, arfl is the electron’s initial ran-
Il. DERIVATION OF THE GAIN IN THE SMALL GAIN, dom phase. We have assumed an ideal monoenergetic un-
LARGE SIGNAL REGIME bunched beam. .
. _ . . Similarly, substituting Eqs(4b) and (5) in Eq. (3) and
We start with the dimensionless Colson equatiffis equating equal powers @ gives a set of equations for the
variousd G, /dr; these will be zero for odd, since the gain
d—M:—fLSin(/l, (29 deper_wds only on_the intensity, i.e., on even powerg,of
dr The final expressions are
dy dGo i N 63
qr M (2b) ar je{¥cod at+ ¢y)),
dEL . ) dGz . 3
qr " lelsing), (20 ar = 2el(¥3— yil6)cosart o)
T T
where ¢ is the electron’s phase relative to the electromag- — oyasin(aT+ o)), (6b)

netic field, e, is the dimensionless laser fieleljs the dimen-

2 2 5
sionless time,j., is the dimensionless current density, and dGa _. b3y oy
¥ o :2Je<(‘/’5_T_T+1_20 cosar o)

() indicates averaging over all electrons. Solutions of Egs. dr
(2) give a good description of the physics of short wave- Ui
length FELs, in the one-dimensional limit. Fbk electrons 2¥1 _ ;
there are R+1 coupled nonlinear differential equations, +( 6 Va2 ¢4¢1)sm(ar+ ¢°)>' e
which cannot be solved analytically. Analytic solutions are
possible only under certain approximations. One approximawhere the variougs, are now known quantities.
tion that is relevant to FEL oscillators is tisenall gainap- The total FEL gain(defined here as the ratio of the in-
proximation, where we assume that the gain in a single pas¥yease in intensity to the initial intensjtgan be evaluated by
is small. Thene, in Egs. (28 and (2b) can be treated as a averaging Eqs(6) over the initial phasep, of the electrons,
constant during any given pass, and these equations cong@Ad then integrating over the entire length of the wiggler
quently decouple from Eq2c). Note that the magnitude of (i.e., from 7 = 0 to 1). Assuming that the laser field is uni-
€, can still be large, so that these equations are valid in théorm inside the wiggler during integratiofsmall gain ap-
large signal, small gairimit. proximation), we find that the FEL gain is given by

From Eqgs.(2a) and(2b) the differential power gain of the ) ) ) 4
FEL can be written as G(a,€0)=2je[Go(@) + €[ g2(a) +€/04(a)],  (7)
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where
1 a
go(a’):;g 1—c05a—§sma , (8a)
S PR 0- a?)coszu—| a5 a® |sina— = asin2 b
gz(a)—ﬁ — - cosy—(9— a“)cos2u— Sasa sma—7a3m al, (8b)
1
gs(@)= W[(zooosm 1728x°) — (76070~ 58296x°— 288a*)cosy — (107152~ 4896Qv> + 576a*) cos2x

— (16858 41760?)cos3n — (154033 — 7272x°+ 36a.°) sina

— (122896 — 8568+°)sin2a— (13845y — 4684°)sin3a]. (80)

The calculations of the functiorgs, (@) andg,(a), although  decreases with increasing intensity, and also shifts towards
straightforward, are tedious. The functign(a) was calcu- «a=4.0. Figure 2 also shows the corresponding curves ob-
lated manually, but the calculation of the functigg(«) was  tained from a one-dimensional, time independent, multipar-
performed USINGUATHEMATICA [6]. The large numbers in ticle FEL simulation that solves the nonlinear Kroll-Morton-
the expression fog,(a) are a consequence of carrying out Rosenbluth equations’] and does not make the small gain
the calculation to higttfourth) order ine, . approximation. The FEL parameters chosen Jage= 1um,
Equation(7) gives the gain as a function of both energy A\w=4 cm, yg=200,ay= 1.0, ,cam= 2 mm, Ny=50, and
detuning as well as optical intensity. Note that the gain ded =100 A. It can be seen that the agreement is very good up
pends only on the dimensionless parameterand ¢>. In  t0 arounde? =35, well beyond the SSG reginér which
principle it also depends on the dimensionless current densf< 1).
sity jo; however, that only serves to set the overall scale The shift in the peak of the detuning curve as a function
factor for the gain curve. Thus, E@7) gives a universal of intensity has an important consequence for FEL oscilla-
family of generalized detuning curves that replace the singl¢ors. We know that a free-running oscillator picks a detuning
SSG curve when the small signal approximation can nat which the gain is maximum. The operating valuexafor
longer be made. an FEL oscillator at saturation is going to be different from
Figure 1 shows plots of the functiomg(«), g-(«), and 2.6, which is the value of only during startup. This will
g4(«); note the different scales. At zero detuning they are alintroduce achirp in the frequency of the optical radiation.
zero, resulting in no gain. At very low intensities’<1)  We will show later that it also significantly affects the cal-
only go contributes, and the total gain therefore increases tgulation of maximum saturated power in the FEL oscillator.
a maximum ate=2.6 before decreasing. A& increases
first g, and theng, start contributing, and one expects the
peak of the gain curve to shift away from=2.6. This is
seen explicitly in Fig. 2, which shows the family of detuning  Figure 2 shows that beyoncf:50 the analytic expres-
curves for differente . It can be seen that the peak gain sjon for the gain, Eq(7), fails. This is because at larger
intensities the higher-order terms that we have dropped in the

Ill. THE GENERALIZED GAIN FUNCTION G(a,ef)
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FIG. 1. Plots ofgg(«), 9-(«), andg,(«) as a function of the
detuning parameter [Egs. (8)]. For the sake of comparision, FIG. 2. Plot of the total gain as a function of the detuning
g,(a) andg,(«) are enhanced by a factor of2@nd 10, respec-  parametewr for different intensities.sf for the analytic calculation
tively. [Eq. (7)] as well as numerical simulations.
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Taylor expansion of Eqg4) and(5) cannot be ignored. Ex- ©
tending the expansion even further is neither very practical 8l R =17
nor tractable. Instead, in order to get a generalized gain func- S L
tion that is valid for higher intensities and into the saturation 7
regime, it is more productive to parametrize the gain.

One widely used parametrization of the gain as a function
of intensity| is

@
L}
m
o
]
-]
-]

Gain (%)
>~

Go
=1 ©) 0 o
0 1 2 3 4 5 6

Detuning parameter (a)

where G, is determined from the low-intensity behavior of 1
the gain, and is an empirical constant that depends on the
nature of the system being investigated. It can be seen from
the above equation thdt is the value of the intensity at
which the initial gainG, halves, and it can therefore be
determined experimentally. Such a formula is often used for
both conventional lasers and as well as FELs. Of course, the
above formula can only be expected to give an approximate,
gualitative, description of gain saturation, and a more accu-
rate gain functionG(l) will depend on the details of the
system being investigated. o 15 30 45 60

For FELs, Dattoliet al. have studied this issue in some Intensity (e )
detail [8—10]. In particular, they have performed a simple
calculation[8] based on an analogy with the laser rate equa- FIG. 3. Plots of the total gaife) as a function of the detuning
tions for conventional lasers, to obtain the following equa-parametera for different intensitieSEE and (b) as a function of

Gain (%)
N e e N @ O O

tion for the gain of FELSs: ef for different . In both cases the analytic curve is for the gen-
eralized gain function of Eq11). Note that in(b), for «=4.2 the
(1—e" |/|s) gain is nonmonotonic; it actually increases slightly before falling.
G(I):GOT' (10)
S

A cursory look at Eq(7) shows that we can actually do
better. We could use the! term in that equation to deter-

There are a number of assumptions made in arriving at thigyine another free parameter in the gain parametrization.
equation; in particular the small gain approximation is madeNote also that this is not just a refinement: ﬂﬁaerm in Eq.

SO t.nat this analysis is expected to be more suited to FEIt?) is needed to make the gain a nonlinear function of inten-
oscillators. I . - sity, and, as we will show below, that is crucial in explaining
Equation(10) for the gain in an FEL oscillator is impor- an unexpected, nonmonotonic, dependence of the gain on

tant because it is based_on .FEL dynamlcs. It is essentially thensity, which is seen in multiparticle simulations that do
two-parameter parametrization for the gain, the two paramz o+ make the small gain assumption

eters beingﬁ_o andlg. The former can be determined from a We therefore propose the following three-parameter pa-
SSG analysis or measurement, and the latter has to be de"?é'metrization of the gain:

mined by fitting to numerical simulations or experimental

data. In addition, a drawback with this formula is that there is 1—exf — (ael+azel)]
no dependence on the energy detuningvhich we know is G(a,e?)=2j.ay 5 7 , (11
important in determining the gain. In fact, in the limit that A€ Tas€L

| —0 one cannot recover the usual SSG formula in full be-

cause the dependence on energy detuning has been remo%laere. the functionsi(a), az(a)' and a,(a), determineq
by assuming tha&=2.6. In the determination df too, it is analytically by Taylor-expanding Eq11) to second order in

implicit that «= 2.6 [10], whereas we have seen in the pre- €L and equating with Eq.7), are given by
vious section that the actual value @fat saturation is likely

to be close to 4.0. 2o( @) =go(a), (129
Our analysis, and Edq7) in particular, offers the oppor-

tunity to improve on Eq(10). For intensities at which our ay(a)= _Zgz(a) (12b)
.. .y 2 2 ’

analysis is validi.e., for ef <50) Eq.(10) should reduce to Jo(a)

Eq. (7). Therefore, expanding Eq10) in a power series in )

|, keeping only the linear term, and comparing with E9), ay(a)= 4192(a)|” 1ga(a) (129

determined ¢ analytically and also introduces dependence K973 go(@) go(a@) |’

into it. When we do this we get an analytic expression for

Is, which, when evaluated for the value @f=2.6 assumed Equation(11) for the generalized gain functiors an im-

in Refs.[8-10|, gives a number that is within 20% of the provement over Eq(10) in three respects. First, it includes
corresponding number using their formula fQr{8]. information from a higher-order Taylor expansion than does
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Eqg. (10), and is therefore expected to be more accurate; sec- 400
ond, it includes the dependence on detuning, unlike(EQ),
which assumesy=2.6; third, all the parameters are deter-
mined analytically — there is no fitting to numerical data.
Figure 3a) shows plots ofG(a,ef) as a function ofe,
obtained using the above parametrization as well as from the
one-dimensional simulations described earlier. It can be seen
that the parametrization nearly doubles the range of validity
of the generalized gain function. At larger intensities there is
a systematic underestimate of the actual value of the gain by
around 10-15%, but the overall shape of the curve and the
shifting of the peak towards higher detuning are in good
agreement with the simulations.
The variation of the FEL gailﬁs(a,ef) as a function of
the intensityef for different values ofe, is shown in Fig.
3(b). Again, there_is go_od agreement _between the analytic °o 1t;o 260 3‘;0 400
results and numerical simulation. For different values of de-
tuning, the gain falls at different rates. For higher values of Pass number
the detuning parametera(= 4.2) we observe the unex-
pected, nonmonotonic, behavior referred to earlier in this FIG. 4. Plot of the intracavity power in an FEL oscillator as a
section; the gain firsincreasesslightly and then decreases. function of pass number for the analytical calculatj&u. (13)] as
This may seem surprising, but can be understood from Figvell as numerical simulation.
1, where we see thay,(«) is negative up to around

a=3.7, and beyond that it turns positive. Whea(a) is  FEL oscillator according to this simple model. Also shown is
positive its contribution novaddsto that ofgg(«), and the  the corresponding plot from the numerical simulation. It can
net effect is an increase in the total gain. As the intensity,e seen that the agreement between the two is generally very
increases further, thg,(a) term, which is negative, now 444 especially during the growth of the intracavity power.
becomes important, so that the total gain starts decreasingpe gifference between the saturated power predicted by our
This gives rise to a nonmonotonic dependence of the gain OBnalysis and the numerical simulation is typically 10%. This

intensity. All the previous z_ittempts to _understand the imer?'shows that the small gain approximation we make is a good
sity dependence of FEL gain had predicted only a monotonige - and validates the application of our analysis to FEL
fall in the gain with increasing intensity. Note that this non- oqqijators.

monotonic behavior is also seen in the simulations. Its origin
lies in thee! term in Eq.(12).

300

200

simul.
analytic

100

Intracavity Power (MW)

The saturated intracavity intensity is an important quan-
tity since it decides how much power we are really going to
get out of the FEL. One can get the saturated intracavity
IV. BUILDUP OF INTENSITY AND SATURATION intensity by numerically integrating the FEL equations. Nu-
IN FEL OSCILLATORS merical simulations, however, cannot give the insight into
) . ) the functional dependencies that analytic relations can.
We now apply the generalized gain function to the studyence, in order to get a better understanding of saturation in
of the buildup of intensity and saturation in FEL oscillators. g ggcillators, it is worth attempting an analytic calculation
Typically, in an oscillator, the net gain per pass is low. They ihe saturated intracavity intensity. Our analysis makes it

optical in_tensity s _built up slowly, over many passes. T_herg- ossible to calculate the saturated intracavity intensity,
fore, during any given pass the small gain approximation |§3 =at

good, and the analysis of the previous sections is applicable.

We therefore use the earlier analysis to model an FEL y T T T T
oscillator as follows. During any pass we assume that the
gain is small and hence the intracavity power is nearly con-
stant, so that Eq(11) for the gain can be employed. With
this calculation of the gain we update the value of the intra-
cavity power, which is then used as a constant for the next
pass. In this way we can model the pass-by-pass buildup of
the intensity in an FEL oscillator, and compare it with one-
dimensional simulations that do not make the small gain as-
sumption.

The equation governing the buildup of intensity is given
by o 1 2 3 4 5 8

)

5 analytic E
40 (T simulation

2
L, sat

20

10 |

Saturated Intensity (e

Detunin arameter (a

EE,n+1:ef,n+[G(a1€E,n)_/]EE,nv (13 °F @

‘ FIG. 5. Plot of the saturated intensi&fsmin an FEL oscillator

where/ is the round-trip loss. as a function of the detuning parameterThe analytic curve cor-
Figure 4 shows the pass-by-pass buildup of power in amesponds to the solution of E¢L4).
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as a function of the detuning parameterby equating the direct measurement af, but the detuning can be deduced as

gain at saturation to the loss, i.e., the shift in the peak of the radiation spectrum between spon-
taneous and stimulated emission. This was reported to be
G(a,ef’sat)z/. (14)  1.6%. Fora=4.7 this shift comes out to be 1.5%, which is in

very good agreement with the experimental number.

Figure 5 shows{ ¢,.as a function of the detuning param-  For the FIREFLY FEL the operating parameters were
eter «, calculated using Eq14), where a round-trip loss of [12] E=22 MeV, lpe=14 A, Ny=25, A\y=6 cm, ay
7% has been assumed. Adncreases from zero, initially the =1.05, and\g=32 um. The optical beam radius was 3 mm
gain is less than the loss. Lasing starts only when the gaihl3]. The SSG and the total cavity losses were repote
becomes just greater than the loss, and hence there existdoabe 7.0% and 4.3%, respectively. For these parameters, a
lower threshold inx below whiche? (,=0. As the detuning ~ Similar analysis gave a maximum saturated power of 25 MW
is increasedefsat initially increases, reaches a maximum, &t @=4.0. This is in good agreement with the measured satu-

and then falls abruptly at an upper threshold beyond whictated power of 30 MW with an experimental uncertainty of
the gain is again less than the loss. The corresponding ny= 30%[13]. For FIREFLY there are no data for the shift in
merical simulation curve is also shown in Fig. 4. We find the radiation peak, but we predict a shift of 2.5%. _
that the agreement between the analytic calculation and the SO We conclude that the predictions of our analysis are in
numerical simulation is quite good. The positions of the two900d agreement with both the FIREFLY and Beijing FEL
thresholds agree well, and even the difference between trfeScillators operating in small gain, large signal regime.
value of the maximum saturated intensity as predicted by oufhis fu_rther validates the relevance and applicability of our
analysis and the numerical simulation is typically less tharfnalysis.

10%. This suggests that our analysis could be very useful in

the_ design of FEL oscillators, for making quiclf yet reliablg V1. DISCUSSION AND CONCLUSIONS
estimates of the saturated power, and in studying the scaling
of saturated intensity with total round-trip loss. It should be emphasized that our calculation is valid in the

small gain, large signal regime, which is the regime of rel-
evance for FEL oscillators where the gain can be quite low
but the intensity can, over many passes, build up to a large
In the previous section we have used our analysis to studyalue. For amplifiers, where the gain is generally high, the
the buildup and saturation of power in an FEL oscillator, andelectron and radiation dynamics cannot be decoupled and
have shown that the results are in good agreement with ondence the present analysis is not expected to be valid.
dimensional simulations with typical FEL parameters. This It should also be noted that our analysis gives an expres-
motivates strongly the conclusion that the regime in whichsion for the generalized gain function, which is universal in
our analysis is validlarge signal, small gain regimés both  nature since it is in terms of the dimensionless variaples
realistic and relevant. However, especially given the simplicande? . The dependence of the gain on various FEL param-
ity of the analysis, there may remain some questions regardkters can be extracted by simply writing the dimensionless
ing its applicability to real, operating, FELs — and hence itsvariables in terms of FEL parameters. In this way, one can
relevance and usefulness. get scaling relations for the saturated intracavity power in
To address this issue we chose two operating FEL oscilterms of the various FEL parameters, such as wiggler length
lators for which all the relevant data were readily available:L,, wiggler parameteny,, wiggler period\,,, beam en-
the Beijing FEL and the FIREFLY FEL at Stanford. We then ergy E, etc.
used Eq.(14) to predict the saturated power and energy de- There are certain gain degradation effects that we have
tuning for both the FELs, and compared with the availablenot considered in our analysis. For example, we have not
data. considered the energy spread in our analysis since we as-
For the Beijing FEL the operating parameters wgt#] sume a monoenergetic electron beam. However, as shown in
E=24 MeV, lpeax = 15 A, A\w = 3 cm, Ny = 50,  Ref.[10] using numerical simulations, for typical FEL oscil-
aw=0.83, and\g = 10.68um. The SSG and the total cavity lator parameters the gain and saturation intensity typically
loss were reported to be 32% and 8%, respectively. The exchange by less than 10% for a relative energy spread of 1%.
perimental data for the optical beam radius were not reSimilarly, the transverse emittance, which can be modeled
ported. However, on the basis of the reported design paraniby an equivalent longitudinal energy spread, is also not ex-
eters of the resonator cavity, we calculated the mean radiysected to change the saturation intensity significantly. To
of the optical beam inside the undulator to be around 2 mmsome extent gain degradation due to filling factor and slip-
To apply our analysis to this FEL we first calculated thepage are empirically taken into account in our comparison
“effective” dimensionless current density, from the SSG  with experiments by lumping them in the “effective]’,
data. In this way, various gain degrading effects such as fillwhich is determined from theneasuredvalue of the SSG.
ing factor and slippage can be empirically accounted forHence, the errors creeping in our analysis by ignoring these
they are all lumped into the “effective’],. We then used effects are expected to be typically around 10—20%.
Eq. (11) for the generalized gain function in Eq14) to Analytic work on the single-particle Colson equations has
calculate the saturated intracavity power for differaniWe  generally been restricted to the SSG analysis. Away from
found that the maximum value of the saturated power was 1this regime analyses have usually assumed a continuous
MW at a=4.7. This value of the saturated power is in goodelectron beam and attempted to solve the coupled Maxwell-
agreement with the observed value of 20 MW. There was n&/lasov equations. This is in spite of the fact that numerical

V. COMPARISON WITH EXPERIMENTS
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simulations of short wavelength FELs are based on thaecond order i . Equating them, we get the Madey theo-
single-particle equations and have proven to be extremelyem in the SSG limit{u,)=(1/2)d/da({ 3)). However, as
successful. Our analysis, and the good agreement with tw@e go to the next-order nonvanishing terwhich is of
operating FELs, shows that for FEL oscillators one can gefourth order ine), the validity of the Madey theorem de-
useful physics out of the single-particle Colson equationsnands that(/,L4>=(1/2)d/da<M§+ 2u1pz). With the ex-
even away from the SSG limit. pressions fop, and u, derived by us, we find that

It is true that by numerical integration of the Colson equa-
tions[Egs.(2)], one can get more detailed information about
gain and saturation in FEL oscillators. This approach, how-
ever, cannot give insight into the various functional depen-
dencies. Our analytical calculation, on the other hand, has + (12404 a®)sina + 28asin2a], (169
the advantage that it can be used to get various functional
dependencies, which helps in developing a better physics
insight into the system. For example, the nonmonotonic de-
pendence of the gain on intensity, which is also seen in nu-

1
(may= W[ —32a°+ (4852¢%)cosy + (336a%) coS2x

d 1
2 — - 2
—da<,u2+ 2 u3) _16a7[246+(288 37a)cosw

N| =

merical simulations, can be qualitatively understood by sim- +(22a°— 42)cos2

ply looking at Fig. 1 obtained from our analyses has been +(173x—3a3)sin

discussed in Sec. )l In Fig. 3 we see that at around ( a”)sina

a=4.0, the gain versus intensity curve is relatively flat. +(4a3—49a)sin2a]. (16b

Thus, at higher intensity, this is the most favorable detuning ) ) _ )
for the oscillator to pick. This would perhaps explain why, in Since the right-hand sides of Eq4.6) are not identical, the
both simulations as well as the experiments reported herd/adey theorm is violated beyond the SSG limit. .
for a variety of FEL parameters, the value ®fat saturation In summary, we have shown that the standard single-
is around 4.0. particle perturbative analysis can be extended to give infor-
It is interesting to note that our analysis can also be usedation about the detuning as well as intensity dependence of
to explicitly test the validity of the well known Madey gain- the gain. One can use this analysis to fix the parameters of
spread theorerfiL4] beyond the SSG limit. The Madey theo- the generalized gain function that is valid to larger intensities
rem relates the first moment of the electron energy change @d into the saturation regime. We thus obtain a generalized
its second moment in the wiggler in the following way:  gain functionG(«,€}) that is analytic, has no free param-
eters, is universal, and agrees well with numerical simula-
d 2 tion, even in its prediction of an unusual nonmonotonic
<A“>:§ @@“ )- (19 yariation of the gain with intensity. Predictions of the satu-
rated intensity are also in good agreement with numerical
Using the perturbative expansion of E¢), this relation can  simulations as well as with experimental data from two op-
be checked to any order im . We have checked that erating FEL oscillators, the Beijing FEL and the FIREFLY
(p1)={(pz)={m1,)=0. Hence, the lowest order non- FEL at Stanford. Our analysis should therefore be useful in
vanishing term in the expression for bat: andAu? is of  the design of FEL oscillators.
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